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Abstract. The paper is a continuation of the authors’ research dealing with a sensitivity study of the wheel camber 

variation of the experimental vehicle Alfa Romeo 156. A numerical comparison of the wheel camber change versus 

vertical axle position has already been performed and published for the vehicle in question. The same methodology 

was applied to four other selected axle types (for the purpose of comparison with each other), represented by 

vehicles in which these axles are actually implemented. As a result of the research, the values of the camber and 

the forces acting on the wheels during the simulated cornering of the vehicle were determined. Subsequently, the 

influence of the kinematic parameters on the dynamic response of the vehicle was evaluated. The current work of 

the authors focuses on experimental runs performed on the real vehicle (Alfa Romeo 156). Accordingly, the data 

from the experimental runs are compared with a numerical simulation of the passage of the modelled vehicle. The 

aim of this research is to evaluate the magnitude of body roll and body pitch for the vehicle slalom manoeuvre. 

The results indicate an excellent correlation between the numerical results and the measured values for this 

manoeuvre. On the basis of these results, it can be concluded that the numerical simulations are predictive, a 

finding that is crucial for developers pursuing equivalent kinematic parameters. In addition, the predictive nature 

of the simulation program allows to simulate diverse manoeuvres (e.g. vehicle braking) with variable input 

parameters, which would be problematic to implement in the case of experimental runs. Reducing the development 

time and tuning time of a prototype vehicle is one of the key factors to the competitiveness of companies. 
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Introduction 

In most cases, students get to handle extreme situations in driving schools only from a theoretical 

point of view. It is essential to remember that a car weighing more than a thousand kilograms and 

travelling at a non-zero (not insignificant) speed is purely in contact with the road at four points. 

Moreover, these four points are not greater than a human palm. Therefore, it is advisable to drive the car 

in a way that corresponds to the optimal behaviour of these four points [1-3]. The only point of contact 

of a vehicle with the substrate is through its tires, which determine whether a vehicle can continue in its 

current direction or halt before a barrier [4]. Road transport safety is significantly impacted by the 

technical state of the vehicle’s safety systems [5; 6]. 

Nevertheless, sometimes the driver is confronted with a situation where the vehicle needs to be 

driven more dynamically. These situations are unpredictable with a probability bordering on certainty 

(for example, a child or an animal ran onto the road) [7; 8]. Accordingly, the car needs to perform a 

driving manoeuvre based on a test method – the so-called moose test (avoiding animals weighing up to 

600 kg by means of a sharp avoidance manoeuvre is crucial). This method is mainly used by inhabitants 

of Sweden. However, the term moose test was made famous in 1997 by the affair with the launch of the 

Mercedes-Benz A-Class by the German carmaker. The editorial team of the illustrious Swedish motor 

magazine Teknikens Värld (World of Technology) borrowed the new Mercedes for the test. In the course 

of driving, the wheel rims touched the road and the overturning of the vehicle inevitably followed. At 

the carmaker’s headquarters, the test results were analysed in detail, inasmuch as the test drivers covered 

several million kilometres with the new car; a number of test drives were devoted to slalom with cones. 

However, under no circumstances were they able to overturn the car, despite the gradual loading of the 

roof. The carmaker had to invest 250 million euros in redesign and another 1.5 billion in development 

[9-11].  

Therefore, the authors of this paper attend to analyse the vehicle slalom passage and perform a 

comparison of the experimental results with the results of the numerical analysis in order to demonstrate 

the predictability of the program. The objective of the slalom passage will be to observe and compare 

the vehicle body roll when passing between the cones at a safe speed, in other words, in order that the 

vehicle is not in danger of slipping. The safe speed will be derived based on the release method and the 

creating of formulae respecting the slip boundary condition, i.e. larger frictional forces. Subsequently, 

the experimental passage of the vehicle will be compared with the passage built in MotionView. The 
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simulated passage was based on the standardised test (Fig. 1). This test was designed by the Spanish car 

magazine KM77. This discipline tests the driving characteristics of vehicles at a speed of 77 km.h-1, 

while its chief task is to check the stability and behaviour of the chassis of the tested vehicle [12;13]. In 

the interest of safety and to prevent damage to the experimental vehicle (Alfa Romeo 156), the maximum 

speed at which there is still no risk of slipping will be determined analytically [14;15].  

 

Fig. 1. Slalom trajectory curve of the tested vehicle 

Within the limits of the test track, a real vehicle will be driven through a curve with radius R = 17 

m. The turn radius was determined from a curve representing the vehicle’s path using Creo Parametric 

4.0. The actual vehicle path is depicted in Fig. 1.  

 

Fig. 2. Wheel forces acting on the vehicle – top view (left) and axle load (right) 

The friction coefficient f = 0.9 (dry asphalt) [16] and the gravitational acceleration g = 9.81 m∙s-2 

were considered in the calculations. Fig. 2 shows the individual wheel loads and the dimensions required 

for their calculation. 

Materials and methods 

Prior to traversing a slalom course by the real vehicle, a calculation was made of the vehicle speed 

at which the vehicle would analytically slip. The vehicle has a wheel track B = 1.52 m, wheelbase 

Lv = 2.59 m and mass m = 1 466 kg. The distance of the centre of gravity of the vehicle from the front 

axle, Lp = 0.945 m, was determined by means of MotionView software based on the simulated vehicle. 

For the sake of calculation of the load on the rear axle (Fig. 3), it was first necessary to develop a moment 

equilibrium equation to the front axle (1), from which the load was expressed (2). By substituting the 

vehicle parameters, the rear axle load Z2 = 5 247.29 N can be determined. On the basis of this 

calculation, it was subsequently feasible to calculate the load for the front axle Z1 = 9 134.17 N, which 

was expressed from the equation of the forces acting in the Y direction (3), (4): 
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 1 2 ,vZ G Z= −  (4) 

where Gv – weight of the vehicle, N; 

 Lp – distance of the centre of gravity of the vehicle from the front axle, m; 

 Lz – distance of the centre of gravity of the vehicle from the rear axle, m; 

 Z1 – front axle load, N; 

 Z2 – rear axle load, N. 

 

Fig. 3. Wheel forces acting on the vehicle – side view 

From the equation of moment equilibrium to the left front wheel (5), the load on the right front 

wheel (6) can be determined. The calculated value of the load Z1L = Z1P = 4 565.09 N is identical for 

both wheels, inasmuch as the centre of gravity of the vehicle is located at its centre (Fig. 2, right): 
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Moreover, the same calculation described by formulae (7) and (8) is applied to the rear axle, after 

substituting values Z2L = Z2P = 2 623.65 N is obtained: 

 2 22
0 : 0,

2
i Z PL

B
M Z B Z=  −  =  (7) 

 2 2

1
.

2
PZ Z=   (8) 

The wheel force amounts to the normal force acting on the contact patch of the wheel (Fig. 4, left). 

It is necessary to multiply the normal force by the friction coefficient f in order to calculate the friction 

force on the wheels. After substituting the normal forces acting on the wheels into formula (9), a 

frictional force of FT = 12 946 N was determined. 

 1 1 2 2( ) ,T N L N P N L N PF F F F F f= + + +   (9) 

where FT – frictional force, N; 

 FN1L – normal force acting on the front left wheel, N; 

 FN2L – normal force acting on the rear left wheel, N; 

 FN1P – normal force acting on the front right wheel, N; 

 FN2P – normal force acting on the rear right wheel, N; 

 f – friction coefficient. 

Because of a smooth slalom passage of the vehicle without slipping, the frictional force FT must be 

greater than the centrifugal force FCe (10), (11). Ultimately, the maximum vehicle speed in slalom 

traversing v is obtained (Fig. 4, right) by dint of expressing formula (12) and substituting the crucial 

values. 
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The calculations considered the slalom traversing of a perfectly rigid body without the following 

properties: 

• a single contact point at the contact patch between the tyre and the road was considered; 

• the stiffness of the car body suspension has not been considered; 

• tire stiffness has not been considered. 

On the basis of acquired knowledge, a real slalom traversing was performed at speeds of 40 and 

50 km∙h-1 during which body roll of the vehicle was observed.  

  

Fig. 4. Considered forces acting on the wheel (left) and forces acting on the vehicle  

during slalom traversing (right) 

For creating the simulation, it was necessary to create a text file in the program. The file contained 

the trajectory of the vehicle with utilisation of spatial coordinates. This corresponded most closely to 

the real traversing. After entering all indispensable parameters, the program will be able to perform a 

simulation, where the body roll (output) could be monitored. 

Results and discussion 

The intended simulation is shown in Fig. 5. In order to measure the body roll angle during a real 

passage (slalom traversing), it was necessary to create a sequence of photos from the videos at selected 

vehicle positions. The photos (Fig. 6) were subsequently imported into Creo Parametric 4.0. In this 

software, the angle subtended by a straight line passing through the contact points of the tires with the 

road and a straight line passing through the center of a pair of vehicle distinctive points (fog lights) was 

measured. This angle represented the body roll angle.  

 

Fig. 5. Vehicle body roll analysis in MotionView software 
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Fig. 6. Vehicle body roll angle measurement in Creo Parametric 4.0 computer program 

Fig. 6 shows that the vehicle body roll angle was approximately 2.5°. This value appears to be 

commensurable in the comparison of conventional vehicles. Fig. 7 contrasts the simulation with the real 

slalom traversing of the vehicle. 

 

Fig. 7. Comparison of simulation with real vehicle passage 

 

Fig. 8. Graph of body roll depending on vehicle position 

Graphical dependencies of the body roll angle versus time were created from the measured values, 

either from MotionView or from videos of real driving. For the sake of a better comparison of the graphs 
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of two different speeds (40 km∙h-1 and 50 km∙h-1), the time axis was replaced by angular coordinates. 

The graph evidently shows (Fig. 8) that the values measured using Creo Parametric are extremely close 

to the values from the MBD simulation. Ultimately, it can be concluded that these numerical simulations 

are predictive (essential information for development engineers). The average deviation for the 40 km∙h-

1 speed of slalom traversing was 0.24 ° and for the 50 km∙h-1 slalom traversing the deviation was 0.36 °. 

In terms of slalom manoeuvres, the Evasive Manoeuvre Assist (EMA) function can be suitably 

employed in the case of under-reactive and over-reactive drivers. The real-time vehicle testing of EMA 

function utilization demonstrates that EMA can be adapted to a defined set of driver reactions. It aims to 

provide the effective torque assistance or resistance intervention with adequate robustness [7;8]. From the 

point of view of improving the vehicle stability a method of determining the three-dimensional stability 

region of ‘lateral speed–yaw rate–roll angle’ can be employed. The results of this method demonstrated 

that the control strategy considering the body roll angle under disparate working conditions can enhance 

the vehicle stability [17]. The body roll angle of the vehicle is closely linked to the hazardous rollover 

phenomenon. If the speed or the distance between the center of gravity and the roll axis increases, 

respectively, the roll angle will rise. Moreover, if the steering angle is more significant, the body roll angle 

will be greater [18;19]. 

Conclusions 

The main objective of this work was to carry out simulations and experimental runs on a real vehicle 

and to compare the evaluated kinematic parameters with the obtained numerical simulation of the 

vehicle. The authors scrutinised the body roll in the transverse and longitudinal directions for the slalom 

driving manoeuvre. The results of the analysis demonstrated a favourable correlation of the values with 

the experiment. Accordingly, it can be concluded that the numerical simulations of the issue in question 

are predictive. This insight is indispensable for the development engineers in the course of observing 

the equivalent kinematic parameters. The predictive nature of the program will enable in the future to 

simulate vehicle braking with different (but controllable) deceleration input values. This step would be 

arduous to implement in the case of real braking. 
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